Colouring graphs

Definition

A (proper) k-coloring of $G=(V, E)$ is a function $f: V \mapsto\{1, \ldots, k\}$ such that for every $x y \in E, f(x) \neq f(y)$.

Definition

A (proper) k-coloring of $G=(V, E)$ is a function $f: V \mapsto\{1, \ldots, k\}$ such that for every $x y \in E, f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

Definition

A (proper) k-coloring of $G=(V, E)$ is a function $f: V \mapsto\{1, \ldots, k\}$ such that for every $x y \in E, f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

The chromatic number of G, denoted $\chi(G)$, is the minimum k for which there exists a k-colouring of G.

Definition

A (proper) k-coloring of $G=(V, E)$ is a function $f: V \mapsto\{1, \ldots, k\}$ such that for every $x y \in E, f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

The chromatic number of G, denoted $\chi(G)$, is the minimum k for which there exists a k-colouring of G.

Theorem (Appel-Haken)
Every planar graph is 4-colourable.

Examples

- K_{n} Complete Graph (Clique) on n vertices :

Examples

- K_{n} Complete Graph (Clique) on n vertices :

$$
\chi\left(G_{n}\right)=n
$$

Examples

- K_{n} Complete Graph (Clique) on n vertices :

$$
\chi\left(G_{n}\right)=n
$$

- C_{n} cycle of length n :

Examples

- K_{n} Complete Graph (Clique) on n vertices :

$$
\chi\left(G_{n}\right)=n
$$

- C_{n} cycle of length n :

$$
\chi\left(C_{n}\right)=\left\{\begin{array}{l}
2 \text { if } n \text { is even } \\
3 \text { if } n \text { is odd }
\end{array}\right.
$$

Examples

- K_{n} Complete Graph (Clique) on n vertices :

$$
\chi\left(G_{n}\right)=n
$$

- C_{n} cycle of length n :

$$
\chi\left(C_{n}\right)=\left\{\begin{array}{l}
2 \text { if } n \text { is even } \\
3 \text { if } n \text { is odd }
\end{array}\right.
$$

Theorem (folklore)
A graph is bipartite (i.e. has chromatic number at most 2) if and only if it does not contain any odd cycle as a subgraph

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$
- $\chi(G) \geqslant \omega(G)$

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$
- $\chi(G) \geqslant \omega(G)$
- $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$
- $\chi(G) \geqslant \omega(G)$
- $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$
- $\chi(G) \leqslant 1+\Delta(G):=$ maximum degree of G (greedy algorithm)

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$
- $\chi(G) \geqslant \omega(G)$
- $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$
- $\chi(G) \leqslant 1+\Delta(G):=$ maximum degree of G (greedy algorithm) (equality iff G is a clique or on odd cycle: Brooks Theorem)

Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$.
The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

- if H is a subgraph of G, then $\chi(H) \leqslant \chi(G)$
- $\chi(G) \geqslant \omega(G)$
- $\chi(G) \geqslant \frac{|V(G)|}{\alpha(G)}$
- $\chi(G) \leqslant 1+\Delta(G):=$ maximum degree of G (greedy algorithm) (equality iff G is a clique or on odd cycle: Brooks Theorem)

General Question of the Talk

What does having large chromatic number say about a graph?

General Question of the Talk

What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

General Question of the Talk

What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case : maybe it contains a big clique as a subgraph.

General Question of the Talk

What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case : maybe it contains a big clique as a subgraph.
- Is it the only case?

General Question of the Talk

What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case : maybe it contains a big clique as a subgraph.
- Is it the only case?
- NO! There even exists triangle-free families of arbitrirary large χ (Mycielski, Tutte, Zykov...)

General Question of the Talk

What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case : maybe it contains a big clique as a subgraph.
- Is it the only case?
- NO! There even exists triangle-free families of arbitrirary large χ (Mycielski, Tutte, Zykov...)

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1) / k}$,

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1) / k}$,
Then it can be shown that

- $\lim _{n \rightarrow \infty} P(\alpha(G) \geqslant 2 \log (n) / p)=0$

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1) / k}$,

Then it can be shown that

- $\lim _{n \rightarrow \infty} P(\alpha(G) \geqslant 2 \log (n) / p)=0$
- $\lim _{n \rightarrow \infty} P(G$ contains more than $n / 2$ cycles of length $<k)=0$

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1) / k}$,

Then it can be shown that

- $\lim _{n \rightarrow \infty} P(\alpha(G) \geqslant 2 \log (n) / p)=0$
- $\lim _{n \rightarrow \infty} P(G$ contains more than $n / 2$ cycles of length $<k)=0$

Therefore, there exists a graph G^{\prime} on $n / 2$ vertices such that

- $\alpha\left(G^{\prime}\right) \leqslant 2 \log (n) / p$.
- $\operatorname{girth}\left(G^{\prime}\right) \geqslant k$

Theorem (Erdős)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1) / k}$,
Then it can be shown that

- $\lim _{n \rightarrow \infty} P(\alpha(G) \geqslant 2 \log (n) / p)=0$
- $\lim _{n \rightarrow \infty} P(G$ contains more than $n / 2$ cycles of length $<k)=0$

Therefore, there exists a graph G^{\prime} on $n / 2$ vertices such that

- $\alpha\left(G^{\prime}\right) \leqslant 2 \log (n) / p$.
- $\operatorname{girth}\left(G^{\prime}\right) \geqslant k$

$$
\chi\left(G^{\prime}\right) \geqslant \frac{\left|V\left(G^{\prime}\right)\right|}{\alpha\left(G^{\prime}\right)} \geqslant \frac{n^{1 / k}}{4 \log n} \geqslant k(\text { for large enough } n)
$$

Chromatic number is not a local notion

Previous theorem says that chromatic number is not a local notion : a graph can locally be a tree (hence 2-colourable) but have very large χ.

Chromatic number is not a local notion

Previous theorem says that chromatic number is not a local notion : a graph can locally be a tree (hence 2-colourable) but have very large χ.

Theorem (Erdős - 1962)
For every k, there exists $\varepsilon>0$ such that for all sufficielntly large n, there exists a graph G on n vertices with

- $\chi(G)>k$
- $\chi\left(\left.G\right|_{S}\right) \leqslant 3$ for every set S of size at most $\varepsilon . n$ in G.

Minors

What about other containment relation?

Minors

What about other containment relation?
A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

Minors

What about other containment relation?
A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

Minors

What about other containment relation?
A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

Conjecture (Hadwiger - 1943)
$\chi(G) \geqslant k \Rightarrow G$ contains K_{k} as a minor.
(Proven for $k \leqslant 6$)

χ-bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega=2$.

χ-bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega=2$. What about restricted classes of graphs?

χ-bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega=2$. What about restricted classes of graphs?
A class C of graphs is said to be chi-bounded if

$$
\exists f: \mathbb{N} \rightarrow \mathbb{N} \quad \forall G \in \mathcal{C} \quad \chi(G) \leqslant f(\omega(G))
$$

χ-bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega=2$. What about restricted classes of graphs?
A class C of graphs is said to be chi-bounded if

$$
\exists f: \mathbb{N} \rightarrow \mathbb{N} \quad \forall G \in \mathcal{C} \quad \chi(G) \leqslant f(\omega(G))
$$

Which classes are chi-bounded?

What about $\chi=\omega$?

What about $\chi=\omega$?

A perfect graph is a graph such that $\chi(H)=\omega(H)$ for every induced subgraph H.

What about $\chi=\omega$?

A perfect graph is a graph such that $\chi(H)=\omega(H)$ for every induced subgraph H.
G perfect $\Rightarrow G$ does not contain an odd hole or its complement as an induced subgraph

What about $\chi=\omega$?

A perfect graph is a graph such that $\chi(H)=\omega(H)$ for every induced subgraph H.
G perfect $\Rightarrow G$ does not contain an odd hole or its complement as an induced subgraph
Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

What about $\chi=\omega$?

A perfect graph is a graph such that $\chi(H)=\omega(H)$ for every induced subgraph H.
G perfect $\Rightarrow G$ does not contain an odd hole or its complement as an induced subgraph
Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

In 2002 : Strong Perfect Graph Theorem by Chudnovsy, Robertson, Seymour, and Thomas (2002).

What about $\chi=\omega$?

A perfect graph is a graph such that $\chi(H)=\omega(H)$ for every induced subgraph H.
G perfect $\Rightarrow G$ does not contain an odd hole or its complement as an induced subgraph

Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

In 2002 : Strong Perfect Graph Theorem by Chudnovsy, Robertson, Seymour, and Thomas (2002).
(Weak perfect graph conjecture G perfect \Rightarrow the complement of G is perfect. Proven by Lovász in 1972)

A class \mathcal{C} is hereditary if every it is closed under taking induced subgraphs.

A class \mathcal{C} is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :
$G \in \mathcal{C}$ iff G does not contain any graph of \mathcal{F} as an induced subgraph

A class \mathcal{C} is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :
$G \in \mathcal{C}$ iff G does not contain any graph of \mathcal{F} as an induced subgraph

If such a class is chi-bounded, we say that \mathcal{F} is chi-bounding.

A class \mathcal{C} is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :
$G \in \mathcal{C}$ iff G does not contain any graph of \mathcal{F} as an induced subgraph

If such a class is chi-bounded, we say that \mathcal{F} is chi-bounding.
Now our question is : what families \mathcal{F} are chi-bounding?

\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F ?

\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F ?

- Then F must be a forest.

\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F ?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free

\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F ?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free

- Is it sufficient??

\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F ?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free

- Is it sufficient??

Conjecture (Gyarfas-Sumner)
If F is a forest, the class of graphs excluding F as an induced subgraph is chi-bounded.

$\mathcal{F}=T$ tree

Little is really known :

- true for $K_{1, n}$ (by Ramsey)

$\mathcal{F}=T$ tree

Little is really known :

- true for $K_{1, n}$ (by Ramsey)
- true for paths (Gyarfas)

$\mathcal{F}=T$ tree

Little is really known :

- true for $K_{1, n}$ (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)

$\mathcal{F}=T$ tree

Little is really known :

- true for $K_{1, n}$ (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)

Scott proved the following very nice "topological" version of the conjecture

- For every tree T, the class of graphs excluding all subdivisions of T is chi-bounded.

Larger families \mathcal{F}

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest?

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi=\omega$

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi=\omega$
- excluding all cycles of length at least k

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles : trees
- excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi=\omega$
- excluding all cycles of length at least k Open conjecture of Gyarfas, now a Theorem.

Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles : trees
- excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi=\omega$
- excluding all cycles of length at least k Open conjecture of Gyarfas, now a Theorem.

Families of cycles

Gyarfas made in fact three conjectures about cycles.

Families of cycles

Gyarfas made in fact three conjectures about cycles.
Conjecture (Gyarfas,'87)

- The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least k is chi-bounding

Families of cycles

Gyarfas made in fact three conjectures about cycles.
Conjecture (Gyarfas,'87)

- The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least k is chi-bounding

Lot of activity around this recently. The first two conejcture were proven in the last 6 months by Seymour and Scott and Chudnovsky.

Families of cycles

Gyarfas made in fact three conjectures about cycles.
Conjecture (Gyarfas,'87)

- The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least k is chi-bounding

Lot of activity around this recently. The first two conejcture were proven in the last 6 months by Seymour and Scott and Chudnovsky. They also proved the last one in the case of triangle free graphs.

A related result

Theorem (Bonamy, C., Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

A related result

Theorem (Bonamy, C., Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don't even try to calculate it)

A related result

Theorem (Bonamy, C.,Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don't even try to calculate it)
- The actual bound could be 4 (3?)

A related result

Theorem (Bonamy, C.,Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don't even try to calculate it)
- The actual bound could be 4 (3?)
- The question originally came as a sub case of a more general question of Kalai and Meschulam.

Every graph with no induced $C_{3 k}$ (trinity graphs) has bounded χ.

Every graph with no induced $C_{3 k}$ (trinity graphs) has bounded χ.

- Use distance layers.

Every graph with no induced $C_{3 k}$ (trinity graphs) has bounded χ.

- Use distance layers.
- Gyarfas idea

Every graph with no induced $C_{3 k}$ (trinity graphs) has bounded χ.

- Use distance layers.
- Gyarfas idea
- Trinity changing paths : try to find vertices x and y such that many independent paths exist between the two.

Every graph with no $3 k$ induced cycle has bounded χ.

Every graph with no $3 k$ induced cycle has bounded χ.

- Exclude C_{5}. Prove the result

Every graph with no $3 k$ induced cycle has bounded χ.

- Exclude C_{5}. Prove the result
- If C_{5} is present and χ large, this also must be present.

Every graph with no $3 k$ induced cycle has bounded χ.

- Exclude C_{5}. Prove the result
- If C_{5} is present and χ large, this also must be present.

- If this is present and χ large, this other must be present

Every graph with no $3 k$ induced cycle has bounded χ.

- Exclude C_{5}. Prove the result
- If C_{5} is present and χ large, this also must be present.

- If this is present and χ large, this other must be present

- If this other is present prove it.

\mathcal{F} is an family of cycles.

Could the following conjecture be also true?
Conjecture
Every infinite family of cycles is chi-bounding.

\mathcal{F} is an family of cycles.

Could the following conjecture be also true?
Conjecture
Every infinite family of cycles is chi-bounding.

NO

\mathcal{F} is an family of cycles.

Could the following conjecture be also true?
Conjecture
Every infinite family of cycles is chi-bounding.

NO
Using Erdős Theorem construct a sequence F_{i} such that

- $\chi\left(F_{i}\right) \geqslant i$
- $\operatorname{girth}\left(F_{i}\right)>2^{\left|F_{i-1}\right|}$.

Let \mathcal{F} be the set of cycles that do NOT occur in any F_{i}.
Then \mathcal{F} is not chi-bounding and is infinite (it contains at least all the $\left.\left|F_{i}\right|\right)$.
Even more it has upper density 1 since it contains every interval $\left[\left|F_{i}\right|, 2^{\left|F_{i}\right|}\right]$.

Conjecture (Scott-Seymour, 2014)

If $I \subset \mathbb{N}$ has bounded gaps ($\exists k$ s.t. every k consecutive integers contains an element of F), then $\left\{C_{i}, i \in I\right\}$ is k-bounding.

They proved (again very recently) that for any k, if G is triangle free and has sufficiently large chromatic number then it contain a sequence of holes of k consecutive lengths.

Conjecture (Scott-Seymour, 2014)

If $I \subset \mathbb{N}$ has bounded gaps ($\exists k$ s.t. every k consecutive integers contains an element of F), then $\left\{C_{i}, i \in I\right\}$ is k-bounding.

They proved (again very recently) that for any k, if G is triangle free and has sufficiently large chromatic number then it contain a sequence of holes of k consecutive lengths.
This contains our 0 mod 3 result, the long odd holes plus triangle.

