Colouring graphs

A (proper) *k*-coloring of G = (V, E) is a function $f : V \mapsto \{1, ..., k\}$ such that for every $xy \in E$, $f(x) \neq f(y)$.

A (proper) k-coloring of G = (V, E) is a function $f : V \mapsto \{1, ..., k\}$ such that for every $xy \in E$, $f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

A (proper) k-coloring of G = (V, E) is a function $f : V \mapsto \{1, ..., k\}$ such that for every $xy \in E$, $f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

The chromatic number of G, denoted $\chi(G)$, is the minimum k for which there exists a k-colouring of G.

A (proper) k-coloring of G = (V, E) is a function $f : V \mapsto \{1, ..., k\}$ such that for every $xy \in E$, $f(x) \neq f(y)$.

In other words one partition the graph into k classes that are independent sets (no edge).

The chromatic number of G, denoted $\chi(G)$, is the minimum k for which there exists a k-colouring of G.

Theorem (Appel-Haken)

Every planar graph is 4-colourable.

► *K_n* Complete Graph (Clique) on *n* vertices :

► *K_n* Complete Graph (Clique) on *n* vertices :

$$\chi(G_n)=n$$

• K_n Complete Graph (Clique) on *n* vertices :

 $\chi(G_n) = n$

• C_n cycle of length n:

• K_n Complete Graph (Clique) on *n* vertices :

 $\chi(G_n) = n$

• C_n cycle of length n:

$$\chi(C_n) = \begin{cases} 2 \text{ if } n \text{ is even} \\ 3 \text{ if } n \text{ is odd} \end{cases}$$

► *K_n* Complete Graph (Clique) on *n* vertices :

Theorem (folklore)

A graph is bipartite (i.e. has chromatic number at most 2) if and only if it does not contain any odd cycle as a subgraph

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$. The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

• if H is a subgraph of G, then $\chi(H) \leq \chi(G)$

The maximum size of a complete graph contained in G is called the clique number, and denoted $\omega(G)$. The maximum size of an independent set contained in G is called the independence number, and denoted $\alpha(G)$.

• if H is a subgraph of G, then $\chi(H) \leq \chi(G)$

• $\chi(G) \ge \omega(G)$

- if H is a subgraph of G, then $\chi(H) \leq \chi(G)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$

- if H is a subgraph of G, then $\chi(H) \leq \chi(G)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$
- ► $\chi(G) \leqslant 1 + \Delta(G) :=$ maximum degree of G (greedy algorithm)

- if H is a subgraph of G, then $\chi(H) \leq \chi(G)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$
- χ(G) ≤ 1 + Δ(G) := maximum degree of G (greedy algorithm) (equality iff G is a clique or on odd cycle : Brooks Theorem)

- if H is a subgraph of G, then $\chi(H) \leq \chi(G)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$
- χ(G) ≤ 1 + Δ(G) := maximum degree of G (greedy algorithm) (equality iff G is a clique or on odd cycle : Brooks Theorem)

General Question of the Talk

What does having large chromatic number say about a graph?

• First case : maybe it contains a big clique as a subgraph.

- First case : maybe it contains a big clique as a subgraph.
- ▶ Is it the only case?

- First case : maybe it contains a big clique as a subgraph.
- Is it the only case?
- ► NO! There even exists triangle-free families of arbitrirary large (Mycielski, Tutte, Zykov...)

- First case : maybe it contains a big clique as a subgraph.
- Is it the only case?
- ► NO! There even exists triangle-free families of arbitrirary large (Mycielski, Tutte, Zykov...)

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1)/k}$,

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1)/k}$,

Then it can be shown that

$$\blacktriangleright \lim_{n\to\infty} P(\alpha(G) \ge 2\log(n)/p) = 0$$

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1)/k}$,

Then it can be shown that

- $\blacktriangleright \lim_{n\to\infty} P(\alpha(G) \ge 2\log(n)/p) = 0$
- ▶ $\lim_{n\to\infty} P(G \text{ contains more than } n/2 \text{ cycles of length } < k) = 0$

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1)/k}$,

Then it can be shown that

- $\blacktriangleright \lim_{n\to\infty} P(\alpha(G) \ge 2\log(n)/p) = 0$
- ▶ $\lim_{n\to\infty} P(G \text{ contains more than } n/2 \text{ cycles of length } < k) = 0$

Therefore, there exists a graph G' on n/2 vertices such that

•
$$\alpha(G') \leq 2\log(n)/p$$
.

• girth(G') $\geq k$

For every k, there exists graphs with girth (min cycle size) at least k and chromatic number at least k.

Consider a random graph on n vertices with edge probability p with $p=n^{-(k-1)/k}$,

Then it can be shown that

- ▶ $\lim_{n\to\infty} P(G \text{ contains more than } n/2 \text{ cycles of length } < k) = 0$

Therefore, there exists a graph G' on n/2 vertices such that

- ► $\alpha(G') \leq 2\log(n)/p$.
- girth(G') $\geq k$

$$\chi(G') \ge \frac{|V(G')|}{\alpha(G')} \ge \frac{n^{1/k}}{4\log n} \ge k \text{ (for large enough } n)$$

Chromatic number is not a local notion

Previous theorem says that chromatic number is not a local notion : a graph can locally be a tree (hence 2-colourable) but have very large χ .

Previous theorem says that chromatic number is not a local notion : a graph can locally be a tree (hence 2-colourable) but have very large χ .

Theorem (Erdős - 1962)

For every k, there exists $\varepsilon > 0$ such that for all sufficiently large n, there exists a graph G on n vertices with

•
$$\chi(G) > k$$

• $\chi(G|_S) \leq 3$ for every set S of size at most ε .n in G.

What about other containment relation?

What about other containment relation?

A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

What about other containment relation?

A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

What about other containment relation?

A graph H is a minor of G if it can be obtained from G by vertex removal, edge removal and edge contraction.

Conjecture (Hadwiger - 1943) $\chi(G) \ge k \Rightarrow G$ contains K_k as a minor.

(Proven for $k \leq 6$)

χ -bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega = 2$.
χ -bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega = 2$. What about restricted classes of graphs?

χ -bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega = 2$. What about restricted classes of graphs? A class C of graphs is said to be chi-bounded if

 $\exists f: \mathbb{N} \to \mathbb{N} \ \forall G \in \mathcal{C} \ \chi(G) \leqslant f(\omega(G))$

χ -bounded classes

For general graphs $\chi(G)$ can be arbitrarily large and $\omega = 2$. What about restricted classes of graphs? A class C of graphs is said to be chi-bounded if

$$\exists f: \mathbb{N} \to \mathbb{N} \ \forall G \in \mathcal{C} \ \chi(G) \leqslant f(\omega(G))$$

Which classes are chi-bounded?

A perfect graph is a graph such that $\chi(H) = \omega(H)$ for every induced subgraph *H*.

A perfect graph is a graph such that $\chi(H) = \omega(H)$ for every induced subgraph *H*.

 ${\it G}$ perfect $\Rightarrow {\it G}$ does not contain an odd hole or its complement as an induced subgraph

A perfect graph is a graph such that $\chi(H) = \omega(H)$ for every induced subgraph *H*.

 ${\it G}$ perfect $\Rightarrow {\it G}$ does not contain an odd hole or its complement as an induced subgraph

Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

A perfect graph is a graph such that $\chi(H) = \omega(H)$ for every induced subgraph *H*.

 ${\it G}$ perfect $\Rightarrow {\it G}$ does not contain an odd hole or its complement as an induced subgraph

Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

In 2002 : Strong Perfect Graph Theorem by Chudnovsy, Robertson, Seymour, and Thomas (2002).

A perfect graph is a graph such that $\chi(H) = \omega(H)$ for every induced subgraph *H*.

 ${\it G}$ perfect $\Rightarrow {\it G}$ does not contain an odd hole or its complement as an induced subgraph

Berge conjectured in the 1960 that this necessary condition is sufficient (Strong perfect graph Conjecture)

In 2002 : Strong Perfect Graph Theorem by Chudnovsy, Robertson, Seymour, and Thomas (2002).

(Weak perfect graph conjecture G perfect \Rightarrow the complement of G is perfect. Proven by Lovász in 1972)

A class $\ensuremath{\mathcal{C}}$ is hereditary if every it is closed under taking induced subgraphs.

A class $\ensuremath{\mathcal{C}}$ is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :

 ${\it G} \in {\it C}$ iff ${\it G}$ does not contain any graph of ${\it F}$ as an induced subgraph

A class $\ensuremath{\mathcal{C}}$ is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :

 ${\it G} \in {\it C}$ iff ${\it G}$ does not contain any graph of ${\it F}$ as an induced subgraph

If such a class is chi-bounded, we say that \mathcal{F} is chi-bounding.

A class \mathcal{C} is hereditary if every it is closed under taking induced subgraphs.

Equivalently it is defined by a family of forbidden subgraphs \mathcal{F} :

 $G \in \mathcal{C}$ iff G does not contain any graph of \mathcal{F} as an induced subgraph

If such a class is chi-bounded, we say that \mathcal{F} is chi-bounding.

Now our question is : what families \mathcal{F} are chi-bounding?

What if \mathcal{F} contains a single graph F?

What if \mathcal{F} contains a single graph F?

► Then *F* must be a forest.

What if \mathcal{F} contains a single graph F?

▶ Then *F* must be a forest.

Proof : If *F* contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than |F|, which are hence *F*-free

What if \mathcal{F} contains a single graph F?

▶ Then *F* must be a forest.

Proof : If *F* contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than |F|, which are hence *F*-free

► Is it sufficient??

What if \mathcal{F} contains a single graph F?

▶ Then *F* must be a forest.

Proof : If *F* contains at least one cycle, use Erdos's result : there exists graph with arbitrarily large χ who do not contain any cycle of length less than |F|, which are hence *F*-free

► Is it sufficient??

Conjecture (Gyarfas-Sumner)

If F is a forest, the class of graphs excluding F as an induced subgraph is chi-bounded.

$\mathcal{F} = T$ tree

Little is really known :

• true for $K_{1,n}$ (by Ramsey)

$\mathcal{F} = T$ tree

Little is really known :

- true for $K_{1,n}$ (by Ramsey)
- true for paths (Gyarfas)

$\mathcal{F} = T$ tree

Little is really known :

- true for $K_{1,n}$ (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)

$\mathcal{F} = \mathcal{T}$ tree

Little is really known :

- true for $K_{1,n}$ (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)

Scott proved the following very nice "topological" version of the conjecture

► For every tree *T*, the class of graphs excluding all subdivisions of *T* is chi-bounded.

Larger families ${\cal F}$

Larger families ${\cal F}$

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

Larger families ${\cal F}$

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest?

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

excluding all cycles : trees

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

- excluding all cycles : trees
- \blacktriangleright excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi = \omega$

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

- excluding all cycles : trees
- \blacktriangleright excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi = \omega$
- excluding all cycles of length at least k

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

- excluding all cycles : trees
- \blacktriangleright excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi = \omega$
- excluding all cycles of length at least k
 Open conjecture of Gyarfas, now a Theorem.

Same as before, Erdos says that if ${\cal F}$ is finite, then ${\cal F}$ must contain a forest to be chi-bouding.

- excluding all cycles : trees
- \blacktriangleright excluding all cycles of length at least 4 : chordal graphs are perfect $\Rightarrow \chi = \omega$
- excluding all cycles of length at least k
 Open conjecture of Gyarfas, now a Theorem.

Gyarfas made in fact three conjectures about cycles.

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,'87)

- ▶ The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- ► The set of all odd cycles of length at least k is chi-bounding

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,'87)

- ▶ The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- ► The set of all odd cycles of length at least k is chi-bounding

Lot of activity around this recently. The first two conejcture were proven in the last 6 months by Seymour and Scott and Chudnovsky.

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,'87)

- ▶ The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- ► The set of all odd cycles of length at least k is chi-bounding

Lot of activity around this recently. The first two conejcture were proven in the last 6 months by Seymour and Scott and Chudnovsky. They also proved the last one in the case of triangle free graphs.

A related result

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.
Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

• Our proof gives an horrible bound (we don't even try to calculate it)

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don't even try to calculate it)
- ▶ The actual bound could be 4 (3?)

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don't even try to calculate it)
- ▶ The actual bound could be 4 (3?)
- The question originally came as a sub case of a more general question of Kalai and Meschulam.

► Use distance layers.

- ► Use distance layers.
- ► Gyarfas idea

- ► Use distance layers.
- ► Gyarfas idea
- Trinity changing paths : try to find vertices x and y such that many independent paths exist between the two.

• Exclude C_5 . Prove the result

- Exclude C_5 . Prove the result
- If C_5 is present and χ large, this also must be present.

- Exclude C_5 . Prove the result
- If C_5 is present and χ large, this also must be present.

 \blacktriangleright If this is present and χ large, this other must be present

- Exclude C_5 . Prove the result
- If C_5 is present and χ large, this also must be present.

 \blacktriangleright If this is present and χ large, this other must be present

▶ If this other is present prove it.

${\mathcal F}$ is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-bounding.

${\mathcal F}$ is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-bounding.

NO

${\mathcal F}$ is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-bounding.

NO

Using Erdős Theorem construct a sequence F_i such that

- $\chi(F_i) \ge i$
- girth(F_i) > $2^{|F_{i-1}|}$.

Let \mathcal{F} be the set of cycles that do NOT occur in any F_i . Then \mathcal{F} is not chi-bounding and is infinite (it contains at least all the $|F_i|$). Even more it has upper density 1 since it contains every interval

 $[|F_i|, 2^{|F_i|}].$

Conjecture (Scott-Seymour, 2014)

If $I \subset \mathbb{N}$ has bounded gaps ($\exists k \text{ s.t. every } k$ consecutive integers contains an element of F), then $\{C_i, i \in I\}$ is k-bounding.

They proved (again very recently) that for any k, if G is triangle free and has sufficiently large chromatic number then it contain a sequence of holes of k consecutive lengths.

Conjecture (Scott-Seymour, 2014)

If $I \subset \mathbb{N}$ has bounded gaps ($\exists k \text{ s.t. every } k$ consecutive integers contains an element of F), then $\{C_i, i \in I\}$ is k-bounding.

They proved (again very recently) that for any k, if G is triangle free and has sufficiently large chromatic number then it contain a sequence of holes of k consecutive lengths.

This contains our 0 mod 3 result, the long odd holes plus triangle.