
Colouring graphs



Definition

A (proper) k-coloring of G = (V ,E ) is a function f : V 7→ {1, . . . , k}
such that for every xy ∈ E , f (x) 6= f (y).

In other words one partition the graph into k classes that are independent
sets (no edge).

The chromatic number of G , denoted χ(G ), is the minimum k for which
there exists a k-colouring of G .

Theorem (Appel-Haken)
Every planar graph is 4-colourable.
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Examples

I Kn Complete Graph (Clique) on n vertices :

χ(Gn) = n

I Cn cycle of length n :

C6 C7 χ(Cn) =

{
2 if n is even
3 if n is odd

Theorem (folklore)
A graph is bipartite (i.e. has chromatic number at most 2) if and only if
it does not contain any odd cycle as a subgraph
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Some Vocabulary and Basic Facts

The maximum size of a complete graph contained in G is called the
clique number, and denoted ω(G ).
The maximum size of an independent set contained in G is called the
independence number, and denoted α(G ).

I if H is a subgraph of G , then χ(H) 6 χ(G )

I χ(G ) > ω(G )

I χ(G ) > |V (G)|
α(G)

I χ(G ) 6 1 + ∆(G ) := maximum degree of G (greedy algorithm)
( equality iff G is a clique or on odd cycle : Brooks Theorem)
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General Question of the Talk

What does having large chromatic number say about a graph?

What does it say in terms of the substructures it must contain?

I First case : maybe it contains a big clique as a subgraph.
I Is it the only case?
I NO! There even exists triangle-free families of arbitrirary large χ

(Mycielski, Tutte, Zykov...)
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Theorem (Erdős)
For every k , there exists graphs with girth (min cycle size) at least k and
chromatic number at least k .

Consider a random graph on n vertices with edge probability p with
p = n−(k−1)/k ,
Then it can be shown that

I limn→∞ P (α(G ) > 2 log (n)/p) = 0
I limn→∞ P (G contains more than n/2 cycles of length < k) = 0

Therefore, there exists a graph G ′ on n/2 vertices such that
I α(G ′) 6 2 log (n)/p.
I girth(G ′) > k

χ(G ′) >
|V (G ′)|
α(G ′)

>
n1/k

4 log n
> k (for large enough n)
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Chromatic number is not a local notion

Previous theorem says that chromatic number is not a local notion : a
graph can locally be a tree (hence 2-colourable) but have very large χ.

Theorem (Erdős - 1962)
For every k , there exists ε > 0 such that for all sufficielntly large n, there
exists a graph G on n vertices with

I χ(G ) > k

I χ(G |S) 6 3 for every set S of size at most ε.n in G .
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Minors

What about other containment relation?

A graph H is a minor of G if it can be obtained from G by vertex
removal, edge removal and edge contraction.

K4
Octahedron

Conjecture (Hadwiger - 1943)
χ(G ) > k ⇒ G contains Kk as a minor.

(Proven for k 6 6)
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χ-bounded classes

For general graphs χ(G ) can be arbitrarily large and ω = 2.

What about restricted classes of graphs?
A class C of graphs is said to be chi-bounded if

∃f : N→ N ∀G ∈ C χ(G ) 6 f (ω(G ))

Which classes are chi-bounded?
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What about χ = ω?

A perfect graph is a graph such that χ(H) = ω(H) for every induced
subgraph H.

G perfect ⇒ G does not contain an odd hole or its complement as an
induced subgraph

Berge conjectured in the 1960 that this necessary condition is sufficient
(Strong perfect graph Conjecture)

In 2002 : Strong Perfect Graph Theorem by Chudnovsy, Robertson,
Seymour, and Thomas (2002).

(Weak perfect graph conjecture G perfect ⇒ the complement of G is
perfect. Proven by Lovász in 1972)
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A class C is hereditary if every it is closed under taking induced
subgraphs.

Equivalently it is defined by a family of forbidden subgraphs F :

G ∈ C iff G does not contain any graph of F as an induced subgraph

If such a class is chi-bounded, we say that F is chi-bounding.

Now our question is : what families F are chi-bounding?
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F of size 1

What if F contains a single graph F?

I Then F must be a forest.

Proof : If F contains at least one cycle, use Erdos’s result : there
exists graph with arbitrarily large χ who do not contain any cycle of
length less than |F |, which are hence F -free

I Is it sufficient??

Conjecture (Gyarfas–Sumner)
If F is a forest, the class of graphs excluding F as an induced subgraph is
chi-bounded.
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F = T tree

Little is really known :
I true for K1,n (by Ramsey)

I true for paths (Gyarfas)
I true for trees of radius 2 (Kierstead and Penrice)

Scott proved the following very nice ”topological” version of the
conjecture

I For every tree T , the class of graphs excluding all subdivisions of T
is chi-bounded.
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Larger families F

Same as before, Erdos says that if F is finite, then F must contain a
forest to be chi-bouding.

What about excluding infinite families that do not contain a forest?
What about excluding families of cycles?

I excluding all cycles : trees
I excluding all cycles of length at least 4 : chordal graphs are perfect
⇒ χ = ω

I excluding all cycles of length at least k
Open conjecture of Gyarfas, now a Theorem.
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Families of cycles

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,’87)

I The set of all cycles of length at least k is chi-bounding
I The set of odd cycles is chi-bounding.
I The set of all odd cycles of length at least k is chi-bounding

Lot of activity around this recently. The first two conejcture were proven
in the last 6 months by Seymour and Scott and Chudnovsky.They also
proved the last one in the case of triangle free graphs.
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A related result

Theorem (Bonamy,C.,Thomassé)
Every graph with sufficiently large chromatic number must contain a
cycle of length 0 mod 3.

I Our proof gives an horrible bound (we don’t even try to calculate it)
I The actual bound could be 4 (3?)
I The question originally came as a sub case of a more general

question of Kalai and Meschulam.
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Every graph with no induced C3k (trinity graphs) has bounded χ.

I Use distance layers.
I Gyarfas idea
I Trinity changing paths : try to find vertices x and y such that many

independent paths exist between the two.
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F is an family of cycles.

Could the following conjecture be also true?

Conjecture
Every infinite family of cycles is chi-bounding.

NO
Using Erdős Theorem construct a sequence Fi such that

I χ(Fi ) > i

I girth(Fi ) > 2|Fi−1|.
Let F be the set of cycles that do NOT occur in any Fi .
Then F is not chi-bounding and is infinite (it contains at least all the
|Fi |).
Even more it has upper density 1 since it contains every interval
[|Fi |, 2|Fi |].
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Conjecture (Scott-Seymour,2014)
If I ⊂ N has bounded gaps ( ∃k s.t. every k consecutive integers contains
an element of F ), then {Ci , i ∈ I} is k-bounding.

They proved (again very recently) that for any k , if G is triangle free and
has sufficiently large chromatic number then it contain a sequence of
holes of k consecutive lengths.

This contains our 0 mod 3 result, the long odd holes plus triangle.
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